FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups 
 ProfileProfile   PreferencesPreferences   Log in to check your private messagesLog in to check your private messages   Log inLog in 
Forum index » Science and Technology » Math » Symbolic
Solving a polynomial
Post new topic   Reply to topic Page 1 of 1 [7 Posts] View previous topic :: View next topic
Author Message
Dana DeLouis
science forum beginner


Joined: 06 Mar 2006
Posts: 37

PostPosted: Mon Jul 17, 2006 12:57 pm    Post subject: Re: Solving a polynomial Reply with quote

Quote:
+ 1.882046594592*10^14*x - 2.594592*10^14

As a side note with Mathematica, you can also enter the number as

1.882046594592*^14x - 2.594592*^14

I believe the idea is that Mathematica will not waste time (whatever that
means :>) ) actually multiplying these two numbers as in an equation (
xxx*10^14)

Just something different...

equ = x^9 - 1000092*x^8 + 92003682*x^7 -
3682083720*x^6 + 83721182769*x^5 -
1182779630508*x^4 + 10630567354028*x^3 -
59354216204400*x^2 + 1.882046594592*^14*x -
2.594592*^14 == 0;

equ2 = Rationalize[equ, 0];

Solve[equ2]

{{x -> 8}, {x -> 9}, {x -> 10}, {x -> 11},
{x -> 12}, {x -> 13}, {x -> 14}, {x -> 15},
{x -> 1000000}}
--
HTH. :>)
Dana DeLouis


"jacob navia" <jacob@jacob.remcomp.fr> wrote in message
news:44bacc21$0$851$ba4acef3@news.orange.fr...
Quote:
Jean-Marc Gulliet a écrit :
jacob navia wrote:

Given
x^9 - 1000092x^8 + 92003682x^7 - 3682083720x^6 + 83721182769x^5 -
1182779630508x^4 + 10630567354028x^3 - 59354216204400x^2 +
1.882046594592e14x - 2.594592e14 = 0

Using a solver using the Jenkings-Traub method (from the page of
the math wizard C. Bond: http://www.crbond.com/download/misc/rpoly.cpp)
I obtain
[ 1] Re: 8.0000000000000067400 Im: 0.0000000000000000000
[ 2] Re: 8.9999999999999727200 Im: 0.0000000000000000000
[ 3] Re: 9.9999999999999436200 Im: 0.0000000000000000000
[ 4] Re: 11.0000000000004890000 Im: 0.0000000000000000000
[ 5] Re: 11.9999999999989139000 Im: 0.0000000000000000000
[ 6] Re: 13.0000000000011665000 Im: 0.0000000000000000000
[ 7] Re: 13.9999999999993683000 Im: 0.0000000000000000000
[ 8] Re: 15.0000000000001392000 Im: 0.0000000000000000000
[ 9] Re: 999999.0000000000000000000 Im: 0.0000000000000000000


<snip>
Quote:
Solve[x^9 - 1000092*x^8 + 92003682*x^7 - 3682083720*x^6 +
83721182769*x^5 - 1182779630508*x^4 + 10630567354028*x^3 -
59354216204400*x^2 + 1.882046594592*10^14*x - 2.594592*10^14 == 0, x]
^^^^^^^^^^ ^^^^^^^
Back to top
jacob navia
science forum beginner


Joined: 06 Jul 2005
Posts: 30

PostPosted: Sun Jul 16, 2006 11:30 pm    Post subject: Re: Solving a polynomial Reply with quote

Jean-Marc Gulliet a écrit :
Quote:
jacob navia wrote:

Given
x^9 - 1000092x^8 + 92003682x^7 - 3682083720x^6 + 83721182769x^5 -
1182779630508x^4 + 10630567354028x^3 - 59354216204400x^2 +
1.882046594592e14x - 2.594592e14 = 0

Using a solver using the Jenkings-Traub method (from the page of
the math wizard C. Bond: http://www.crbond.com/download/misc/rpoly.cpp)
I obtain
[ 1] Re: 8.0000000000000067400 Im: 0.0000000000000000000
[ 2] Re: 8.9999999999999727200 Im: 0.0000000000000000000
[ 3] Re: 9.9999999999999436200 Im: 0.0000000000000000000
[ 4] Re: 11.0000000000004890000 Im: 0.0000000000000000000
[ 5] Re: 11.9999999999989139000 Im: 0.0000000000000000000
[ 6] Re: 13.0000000000011665000 Im: 0.0000000000000000000
[ 7] Re: 13.9999999999993683000 Im: 0.0000000000000000000
[ 8] Re: 15.0000000000001392000 Im: 0.0000000000000000000
[ 9] Re: 999999.0000000000000000000 Im: 0.0000000000000000000

Using mathematica online at http://www.mathe-online.at I obtain
a result I can't figure out at all.
13 2
{{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 &
, 1]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 &
, 2]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 &
, 3]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 &
, 4]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 &
, 5]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 &
, 6]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 &
, 7]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 &
, 8]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 &
, 9]}}


Anyone there tell me what I am doing wrong?

Thanks in advance

jacob


Hi Jacob,

I do not think you have done anything wrong since the solution returned
by Mathematica is valid: Root objects are an exact symbolic
representation of a solution (same thing as in Maple, see Axel Vogt
email), which are returned by the built-in function Solve.

However, the results returned by Mathematica 5.2 for Windows (on my
computer) are the correct numerical values. I tried to check the online
version you used but to no avail: I had been repeatedly unable to
connect to the server (time out error) before I gave up and wrote this
email.

Solve[x^9 - 1000092*x^8 + 92003682*x^7 - 3682083720*x^6 +
83721182769*x^5 - 1182779630508*x^4 + 10630567354028*x^3 -
59354216204400*x^2 + 1.882046594592*10^14*x - 2.594592*10^14 == 0, x]
^^^^^^^^^^ ^^^^^^^


That was my mistake.

Thanks and excuse me for this blunder

jacob
Back to top
jacob navia
science forum beginner


Joined: 06 Jul 2005
Posts: 30

PostPosted: Sun Jul 16, 2006 11:29 pm    Post subject: Re: Solving a polynomial Reply with quote

rjf a écrit :
Quote:
For a start, your polynomial is in several more variables than you
intended.

1.882e14x is 1.882 * e14x, so you have introduced an extra
variable e14x.

Presumably you mean to write this: 1.882*10^(14)*x.

GASP!

Err....

Thanks and excuse me but by the life of me I would never thought about
THIS problem :-)

I mean the notation 1.234e12 is SO UNIVERSAL spanning fortran, C, C++
probably C# Java lisp and so many others that I just took it for
granted.

Thanks for your answer
Back to top
rjf
science forum beginner


Joined: 05 May 2006
Posts: 5

PostPosted: Sun Jul 16, 2006 10:16 pm    Post subject: Re: Solving a polynomial Reply with quote

For a start, your polynomial is in several more variables than you
intended.

1.882e14x is 1.882 * e14x, so you have introduced an extra
variable e14x.

Presumably you mean to write this: 1.882*10^(14)*x.

Also you probably should use NSolve rather than Solve.

There is a certain burden in using programs like Mathematica. You have
to provide the
input in the syntax expected by the program.

RJF

Jean-Marc Gulliet wrote:
Quote:
jacob navia wrote:
Given
x^9 - 1000092x^8 + 92003682x^7 - 3682083720x^6 + 83721182769x^5 -
1182779630508x^4 + 10630567354028x^3 - 59354216204400x^2 +
1.882046594592e14x - 2.594592e14 = 0

Using a solver using the Jenkings-Traub method (from the page of
the math wizard C. Bond: http://www.crbond.com/download/misc/rpoly.cpp)
I obtain
[ 1] Re: 8.0000000000000067400 Im: 0.0000000000000000000
[ 2] Re: 8.9999999999999727200 Im: 0.0000000000000000000
[ 3] Re: 9.9999999999999436200 Im: 0.0000000000000000000
[ 4] Re: 11.0000000000004890000 Im: 0.0000000000000000000
[ 5] Re: 11.9999999999989139000 Im: 0.0000000000000000000
[ 6] Re: 13.0000000000011665000 Im: 0.0000000000000000000
[ 7] Re: 13.9999999999993683000 Im: 0.0000000000000000000
[ 8] Re: 15.0000000000001392000 Im: 0.0000000000000000000
[ 9] Re: 999999.0000000000000000000 Im: 0.0000000000000000000

Using mathematica online at http://www.mathe-online.at I obtain
a result I can't figure out at all.
13 2
{{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
1]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
2]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
3]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
4]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
5]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
6]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
7]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
8]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
9]}}


Anyone there tell me what I am doing wrong?

Thanks in advance

jacob

Hi Jacob,

I do not think you have done anything wrong since the solution returned
by Mathematica is valid: Root objects are an exact symbolic
representation of a solution (same thing as in Maple, see Axel Vogt
email), which are returned by the built-in function Solve.

However, the results returned by Mathematica 5.2 for Windows (on my
computer) are the correct numerical values. I tried to check the online
version you used but to no avail: I had been repeatedly unable to
connect to the server (time out error) before I gave up and wrote this
email.

Solve[x^9 - 1000092*x^8 + 92003682*x^7 - 3682083720*x^6 +
83721182769*x^5 - 1182779630508*x^4 + 10630567354028*x^3 -
59354216204400*x^2 + 1.882046594592*10^14*x - 2.594592*10^14 == 0, x]

returns

{{x -> 7.999999999973662}, {x -> 9.000000000257524}, {x -
9.999999998875227}, {x -> 11.000000002819503}, {x -> 11.99999999566689},
{x -> 13.000000004035554}, {x -> 13.999999997912402}, {x -
15.000000000459247}, {x -> 1.*^6}})

To get more info on Root objects in Mathematica, see
http://documents.wolfram.com/mathematica/functions/Root

HTH,
Jean-Marc
Back to top
Jean-Marc Gulliet
science forum beginner


Joined: 28 May 2005
Posts: 38

PostPosted: Sun Jul 16, 2006 9:34 pm    Post subject: Re: Solving a polynomial Reply with quote

jacob navia wrote:
Quote:
Given
x^9 - 1000092x^8 + 92003682x^7 - 3682083720x^6 + 83721182769x^5 -
1182779630508x^4 + 10630567354028x^3 - 59354216204400x^2 +
1.882046594592e14x - 2.594592e14 = 0

Using a solver using the Jenkings-Traub method (from the page of
the math wizard C. Bond: http://www.crbond.com/download/misc/rpoly.cpp)
I obtain
[ 1] Re: 8.0000000000000067400 Im: 0.0000000000000000000
[ 2] Re: 8.9999999999999727200 Im: 0.0000000000000000000
[ 3] Re: 9.9999999999999436200 Im: 0.0000000000000000000
[ 4] Re: 11.0000000000004890000 Im: 0.0000000000000000000
[ 5] Re: 11.9999999999989139000 Im: 0.0000000000000000000
[ 6] Re: 13.0000000000011665000 Im: 0.0000000000000000000
[ 7] Re: 13.9999999999993683000 Im: 0.0000000000000000000
[ 8] Re: 15.0000000000001392000 Im: 0.0000000000000000000
[ 9] Re: 999999.0000000000000000000 Im: 0.0000000000000000000

Using mathematica online at http://www.mathe-online.at I obtain
a result I can't figure out at all.
13 2
{{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
1]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
2]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
3]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
4]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
5]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
6]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
7]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
8]},

13 2
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
9]}}


Anyone there tell me what I am doing wrong?

Thanks in advance

jacob

Hi Jacob,

I do not think you have done anything wrong since the solution returned
by Mathematica is valid: Root objects are an exact symbolic
representation of a solution (same thing as in Maple, see Axel Vogt
email), which are returned by the built-in function Solve.

However, the results returned by Mathematica 5.2 for Windows (on my
computer) are the correct numerical values. I tried to check the online
version you used but to no avail: I had been repeatedly unable to
connect to the server (time out error) before I gave up and wrote this
email.

Solve[x^9 - 1000092*x^8 + 92003682*x^7 - 3682083720*x^6 +
83721182769*x^5 - 1182779630508*x^4 + 10630567354028*x^3 -
59354216204400*x^2 + 1.882046594592*10^14*x - 2.594592*10^14 == 0, x]

returns

{{x -> 7.999999999973662}, {x -> 9.000000000257524}, {x ->
9.999999998875227}, {x -> 11.000000002819503}, {x -> 11.99999999566689},
{x -> 13.000000004035554}, {x -> 13.999999997912402}, {x ->
15.000000000459247}, {x -> 1.*^6}})

To get more info on Root objects in Mathematica, see
http://documents.wolfram.com/mathematica/functions/Root

HTH,
Jean-Marc
Back to top
Axel Vogt
science forum addict


Joined: 03 May 2005
Posts: 93

PostPosted: Sun Jul 16, 2006 6:34 pm    Post subject: Re: Solving a polynomial Reply with quote

May be it is like in Maple, you have to force Root to
spit out its solutions (as a CAS may work symbolical
with the roots).

Here is it is Maple:

restart; Digits:=14:

eq:=
x^9 - 1000092*x^8 + 92003682*x^7 - 3682083720*x^6 + 83721182769*x^5 -
1182779630508*x^4 + 10630567354028*x^3 - 59354216204400*x^2 +
1.882046594592e14*x - 2.594592e14:

R:='RootOf(eq)';
allvalues(R);

R := RootOf(eq)
7
8., 9., 10., 11., 12., 13., 14., 15., 0.1000000 10
Back to top
jacob navia
science forum beginner


Joined: 06 Jul 2005
Posts: 30

PostPosted: Sun Jul 16, 2006 5:51 pm    Post subject: Solving a polynomial Reply with quote

Given
x^9 - 1000092x^8 + 92003682x^7 - 3682083720x^6 + 83721182769x^5 -
1182779630508x^4 + 10630567354028x^3 - 59354216204400x^2 +
1.882046594592e14x - 2.594592e14 = 0

Using a solver using the Jenkings-Traub method (from the page of
the math wizard C. Bond: http://www.crbond.com/download/misc/rpoly.cpp)
I obtain
[ 1] Re: 8.0000000000000067400 Im: 0.0000000000000000000
[ 2] Re: 8.9999999999999727200 Im: 0.0000000000000000000
[ 3] Re: 9.9999999999999436200 Im: 0.0000000000000000000
[ 4] Re: 11.0000000000004890000 Im: 0.0000000000000000000
[ 5] Re: 11.9999999999989139000 Im: 0.0000000000000000000
[ 6] Re: 13.0000000000011665000 Im: 0.0000000000000000000
[ 7] Re: 13.9999999999993683000 Im: 0.0000000000000000000
[ 8] Re: 15.0000000000001392000 Im: 0.0000000000000000000
[ 9] Re: 999999.0000000000000000000 Im: 0.0000000000000000000

Using mathematica online at http://www.mathe-online.at I obtain
a result I can't figure out at all.
13 2
{{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
Quote:
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
Quote:
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
1]},


13 2
Quote:
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
Quote:
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
Quote:
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
2]},


13 2
Quote:
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
Quote:
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
Quote:
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
3]},


13 2
Quote:
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
Quote:
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
Quote:
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
4]},


13 2
Quote:
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
Quote:
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
Quote:
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
5]},


13 2
Quote:
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
Quote:
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
Quote:
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
6]},


13 2
Quote:
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
Quote:
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
Quote:
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
7]},


13 2
Quote:
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
Quote:
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
Quote:
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
8]},


13 2
Quote:
{x -> Root[-2.59459 e14 + 1.88205 e14x - 5.93542 10 #1 +

13 3 12 4 10 5
Quote:
1.06306 10 #1 - 1.18278 10 #1 + 8.37212 10 #1 -

9 6 7 7 6 8 9
Quote:
3.68208 10 #1 + 9.20037 10 #1 - 1.00009 10 #1 + #1 & ,
9]}}



Anyone there tell me what I am doing wrong?

Thanks in advance

jacob
Back to top
Google

Back to top
Display posts from previous:   
Post new topic   Reply to topic Page 1 of 1 [7 Posts] View previous topic :: View next topic
The time now is Thu Jun 22, 2017 6:23 pm | All times are GMT
Forum index » Science and Technology » Math » Symbolic
Jump to:  

Similar Topics
Topic Author Forum Replies Last Post
No new posts Entire functions, polynomial bounds david petry Math 2 Thu Jul 20, 2006 11:09 pm
No new posts inverting a cubic polynomial as a series pluton Math 6 Tue Jul 18, 2006 4:54 am
No new posts Solving exponential inequality: a^x + b = c^x ??? Angelina.Paris@gmail.com1 Math 7 Mon Jul 17, 2006 3:51 am
No new posts Polynomial solving jacob navia num-analysis 4 Sun Jul 16, 2006 6:12 pm
No new posts Constructing a (GF(2^m)) polynomial from its roots using ... jaco.versfeld@gmail.com Math 2 Mon Jul 10, 2006 9:10 am

Copyright © 2004-2005 DeniX Solutions SRL
Other DeniX Solutions sites: Electronics forum |  Medicine forum |  Unix/Linux blog |  Unix/Linux documentation |  Unix/Linux forums  |  send newsletters
 


Powered by phpBB © 2001, 2005 phpBB Group
[ Time: 0.2308s ][ Queries: 20 (0.1921s) ][ GZIP on - Debug on ]