Search   Memberlist   Usergroups
 Page 1 of 1 [1 Post]
Author Message
larryhammick@telus.net
science forum Guru Wannabe

Joined: 14 Feb 2006
Posts: 217

Posted: Fri Jul 21, 2006 3:28 am    Post subject: A series related to the Hilbert transform

This thing is not new, but it struck me as surprising and interesting,
so I thought I'd pass it along.

Define a function f on the integers by
f(n) = 1/(2n-1) if n > 0
f(n) = - f(1-n) if n <= 0.
For any fixed integer m, the family of numbers
f(n)f(n+m)
is absolutely summable, and its sum is zero if m is nonzero.

This result is essentially a special case of the fact that the
"discrete Hilbert transform" (google) preserves orthogonality between
square-summable sequences.

 Display posts from previous: All Posts1 Day7 Days2 Weeks1 Month3 Months6 Months1 Year Oldest FirstNewest First
 Page 1 of 1 [1 Post]
 The time now is Mon Oct 22, 2018 10:54 pm | All times are GMT
 Jump to: Select a forum-------------------Forum index|___Science and Technology    |___Math    |   |___Research    |   |___num-analysis    |   |___Symbolic    |   |___Combinatorics    |   |___Probability    |   |   |___Prediction    |   |       |   |___Undergraduate    |   |___Recreational    |       |___Physics    |   |___Research    |   |___New Theories    |   |___Acoustics    |   |___Electromagnetics    |   |___Strings    |   |___Particle    |   |___Fusion    |   |___Relativity    |       |___Chem    |   |___Analytical    |   |___Electrochem    |   |   |___Battery    |   |       |   |___Coatings    |       |___Engineering        |___Control        |___Mechanics        |___Chemical

 Topic Author Forum Replies Last Post Similar Topics Function from Taylor series? Nathan Urban Research 1 Thu Jul 20, 2006 12:48 am Fourier Transform / Decay / Canot set don11154 Math 11 Wed Jul 19, 2006 9:41 pm Complex Analysis question, Taylor series James1118 Math 6 Tue Jul 18, 2006 2:17 pm inverting a cubic polynomial as a series pluton Math 6 Tue Jul 18, 2006 4:54 am why are the polynomials in this series all solvable by ra... Lee Davidson Symbolic 5 Mon Jul 17, 2006 4:34 pm